It will contribute to the general elucidation of this treatise, if we re mark, first, upon its Scope and purpose, and secondly, upon the import of its title.
Large data sets arriving at every increasing speeds require a new set of efficient data analysis techniques. Data analytics are becoming an essential component for every organization and technologies such as health care, financial trading, Internet of Things, Smart Cities or Cyber Physical Systems. However, these diverse application domains give rise to new research challenges. In this context, the book provides a broad picture on the concepts, techniques, applications, and open research directions in this area. In addition, it serves as a single source of reference for acquiring the knowledge on emerging Big Data Analytics technologies.
Now the present volume, as its title will suggest, is conc with analytical ethics. It touches on questions of descriptive only in passing. And it makes no effort to answer (as distinct fro survey) the questions of normative ethics — withholding answers them because, in the interest of a temporary division of labor, must restrict attention to its selected tasks.
The development of smart cities is one of the most important challenges over the next few decades. Governments and companies are leveraging billions of dollars in public and private funds for smart cities. Next generation smart cities are heavily dependent on distributed smart sensing systems and devices to monitor the urban infrastructure. The smart sensor networks serve as autonomous intelligent nodes to measure a variety of physical or environmental parameters. They should react in time, establish automated control, and collect information for intelligent decision-making. In this context, one of the major tasks is to develop advanced frameworks for the interpretation of the huge amount of information provided by the emerging testing and monitoring systems. Data Analytics for Smart Cities brings together some of the most exciting new developments in the area of integrating advanced data analytics systems into smart cities along with complementary technological paradigms such as cloud computing and Internet of Things (IoT). The book serves as a reference for researchers and engineers in domains of advanced computation, optimization, and data mining for smart civil infrastructure condition assessment, dynamic visualization, intelligent transportation systems (ITS), cyber-physical systems, and smart construction technologies. The chapters are presented in a hands-on manner to facilitate researchers in tackling applications. Arguably, data analytics technologies play a key role in tackling the challenge of creating smart cities. Data analytics applications involve collecting, integrating, and preparing time- and space-dependent data produced by sensors, complex engineered systems, and physical assets, followed by developing and testing analytical models to verify the accuracy of results. This book covers this multidisciplinary field and examines multiple paradigms such as machine learning, pattern recognition, statistics, intelligent databases, knowledge acquisition, data visualization, high performance computing, and expert systems. The book explores new territory by discussing the cutting-edge concept of Big Data analytics for interpreting massive amounts of data in smart city applications.
Data Analysis for Omic Sciences: Methods and Applications, Volume 82, shows how these types of challenging datasets can be analyzed. Examples of applications in real environmental, clinical and food analysis cases help readers disseminate these approaches. Chapters of note include an Introduction to Data Analysis Relevance in the Omics Era, Omics Experimental Design and Data Acquisition, Microarrays Data, Analysis of High-Throughput RNA Sequencing Data, Analysis of High-Throughput DNA Bisulfite Sequencing Data, Data Quality Assessment in Untargeted LC-MS Metabolomic, Data Normalization and Scaling, Metabolomics Data Preprocessing, and more. Presents the best reference book for omics data analysisProvides a review of the latest trends in transcriptomics and metabolomics data analysis toolsIncludes examples of applications in research fields, such as environmental, biomedical and food analysis
Thermal Analysis techniques are used in a wide range of disciplines, from pharmacy and foods to polymer science, materials and glasses; in fact any field where changes in sample behaviour are observed under controlled heating or controlled cooling conditions. The wide range of measurements possible provide fundamental information on the material properties of the system under test, so thermal analysis has found increasing use both in basic characterisation of materials and in a wide range of applications in research, development and quality control in industry and academia. Principles and Applications of Thermal Analysis is written by manufacturers and experienced users of thermal techniques. It provides the reader with sound practical instruction on how to use the techniques and gives an up to date account of the principle industrial applications. By covering basic thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) including the new approach of Fast Scanning DSC, together with dynamic mechanical analysis (DMA /TMA) methods, then developing the discussion to encompass industrial applications, the book serves as an ideal introduction to the technology for new users. With a strong focus on practical issues and relating the measurements to the physical behaviour of the materials under test, the book will also serve as an important reference for experienced analysts.
This book is an outgrowth of research done by Dr. Gamt Dijsterhuis for his doctoral thesis at the University of Leiden. However, there are also contributions by several other authors, as well, including Eeke van der Burg, John Gower, Pieter Punter, Els van den Broek, and Margo Flipsen. This book discusses the use of Multivariate Data Analysis to solve problems in sensory and consumer research. More specifically the focus is on the analysis of the reactions to certain characteristics of food products, which are in the form of scores given to attributes perceived in the food stimuli; the analyses are multivariate; and the senses are mainly the senses of smell and taste. The four main themes covered in the book are: (1) Individual Differences, (2) Measurement Levels; (3) Sensory-Instrumental Relations, and (4) Time-Intensity Data Analysis. The statistical methods discussed include Principle Components Analysis, Generalized Procrustes Analysis, Multidimensional Scaling, Redundancy Analysis, and Canonical Analysis. This book will be a value to all professionals and students working in the sensory studies
Written for biologists and medical researchers who don't have any special training in data analysis and statistics, Guide to Analysis of DNA Microarray Data, Second Edition begins where DNA array equipment leaves off: the image produced by the microarray. The text deals with the questions that arise starting at this point, providing an introduction to microarray technology, then moving on to image analysis, data analysis, cluster analysis, and beyond. With all chapters rewritten, updated, and expanded to include the latest generation of technology and methods, Guide to Analysis of DNA Microarray Data, Second Edition offers practitioners reliable information using concrete examples and a clear, comprehensible style. This Second Edition features entirely new chapters on: * Image analysis * Experiment design * Automated analysis, integrated analysis, and systems biology * Interpretation of results Intended for readers seeking practical applications, this text covers a broad spectrum of proven approaches in this rapidly growing technology. Additional features include further reading suggestions for each chapter, as well as a thorough review of available analysis software.
Although data engineering is a multi-disciplinary field with applications in control, decision theory, and the emerging hot area of bioinformatics, there are no books on the market that make the subject accessible to non-experts. This book fills the gap in the field, offering a clear, user-friendly introduction to the main theoretical and practical tools for analyzing complex systems. An ftp site features the corresponding MATLAB and Mathematical tools and simulations. Market: Researchers in data management, electrical engineering, computer science, and life sciences.