There are examples aplenty in the macroscopic world that demonstrate the form of objects directing their functions and properties. On the other hand, the fabrication of extremely small objects having precisely defined structures has only recently become an attractive challenge, which is now opening the door to nanoscience and nanotechnology.In the field of synthetic polymer chemistry, a number of critical breakthroughs have been achieved during the first decade of this century to produce an important class of polymers having a variety of cyclic and multicyclic topologies. These developments now offer unique opportunities in polymer materials design to create unprecedented properties and functions simply based on the form, i.e. topology, of polymer molecules.In this book on topological polymer chemistry, the important developments in this growing area will be collected for the first time, with particular emphasis on new conceptual insights for polymer chemistry and polymer materials. The book will systematically review topological polymer chemistry from basic aspects to practice, and give a broad overview of cyclic polymers covering new synthesis, structure characterization, basic properties/functions and the eventual applications.
{{comment.content}}