Within the general framework of the dynamics of “large” groups on geometric spaces, the focus is on the types of groups that can act in complicated ways on Lorentz manifolds, and on the structure of the resulting manifolds and actions. This particular area of dynamics is an active one, and not all the results are in their final form. However, at this point, a great deal can be said about the particular Lie groups that come up in this context. It is impressive that, even assuming very weak recurrence of the action, the list of possible groups is quite restricted. For the most complicated of these groups, one can also describe reasonably well the local structure of the actions that arise.This advanced text is also appropriate to a course for mathematics graduate students who have completed their first year of study.
{{comment.content}}