Henstock-kurzweil Integration: Its Relation To Topological Vector Spaces

ISBN: 9789810242077 出版年:2000 页码:146 Jaroslav Kurzweil World Scientific Publishing Company

知识网络
知识图谱网络
内容简介

Henstock-Kurzweil (HK) integration, which is based on integral sums, can be obtained by an inconspicuous change in the definition of Riemann integration. It is an extension of Lebesgue integration and there exists an HK-integrable function f such that its absolute value |f| is not HK-integrable. In this book HK integration is treated only on compact one-dimensional intervals.The set of convergent sequences of HK-integrable functions is singled out by an elementary convergence theorem. The concept of convergent sequences is transferred to the set P of primitives of HK-integrable functions; these convergent sequences of functions from P are called E-convergent. The main results: there exists a topology U on P such that (1) (P,U) is a topological vector space, (2) (P,U) is complete, and (3) every E-convergent sequence is convergent in (P,U). On the other hand, there is no topology U fulfilling (2), (3) and (P,U) being a locally convex space.

Amazon评论 {{comment.person}}

{{comment.content}}

作品图片
推荐图书