Understanding, controlling and, more importantly, enhancing the interaction between light (photons) and spin waves (magnons) can be, among others, a step towards the realization of magnon-mediated microwave-to-optical transducers for quantum computing applications or hybrid solid-state spintronic-photonic interconnections. In this respect, the development of novel composite multifunctional micro/nanostructures — so-called optomagnonic — which simultaneously control optical and spin waves and enhance their interaction, is particularly attractive.This book constitutes a collective work, comprising seven chapters from leading researchers in the field of optomagnonics and related areas. Apart from exciting recent developments, it provides the necessary fundamental knowledge in an explanatory manner and, therefore, it is accessible to non-experts. It is suitable for PhD students, post-docs, and researchers who are willing to get engaged in optomagnonics, while selected parts could also serve as lecture material for advanced courses. With increasing demand for miniaturized optomagnonic devices, this book will be an important resource to researchers working on optomagnonics, magneto-optics, spintronics, as well as on hybrid micro/nano devices for information processing.
{{comment.content}}