----- 纳米碳管
Preface. 1 Introduction. 2 Structure and Symmetry. 2.1 Structure of Carbon Nanotubes. 2.2 Experiments. 2.3 Symmetry of Single-walled Carbon Nanotubes. 2.3.1 Symmetry Operations. 2.3.2 Symmetry-based Quantum Numbers. 2.3.3 Irreducible representations. 2.3.4 Projection Operators. 2.3.5 Phonon Symmetries in Carbon Nanotubes. 2.4 Summary. 3 Electronic Properties of Carbon Nanotubes. 3.1 Graphene. 3.1.1 Tight-binding Description of Graphene. 3.2 Zone-folding Approximation. 3.3 Electronic Density of States. 3.3.1 Experimental Verifications of the DOS. 3.4 Beyond Zone Folding - Curvature Effects. 3.4.1 Secondary Gaps in Metallic Nanotubes. 3.4.2 Rehybridization of the sigma and pi States. 3.5 Nanotube Bundles. 3.5.1 Low-energy Properties. 3.5.2 Visible Energy Range. 3.6 Summary. 4 Optical P roperties. 4.1 Absorption and Emission. 4.1.1 Selection Rules and Depolarization. 4.2 Spectra of Isolated Tubes. 4.3 Photoluminescence Excitation - (n1, n2) Assignment. 4.4 4-A-diameter Nanotubes. 4.5 Bundles of Nanotubes. 4.6 Excited-state Carrier Dynamics. 4.7 Summary. 5 Electronic Transport. 5.1 Room-temperature Conductance of Nanotubes. 5.2 Electron Scattering. 5.3 Coulomb Blockade. 5.4 Luttinger Liquid. 5.5 Summary. 6 Elastic Properties. 6.1 Continuum Model of Isolated Nanotubes. 6.1.1 Ab-initio, Tight-binding, and Force-constants Calculations. 6.2 Pressure Dependence of the Phonon Frequencies. 6.3 Micro-mechanical Manipulations. 6.4 Summary. 7 Raman Scattering. 7.1 Raman Basics and Selection Rules. 7.2 Tensor Invariants. 7.2.1 Polarized Measurements. 7.3 Raman Measurements at Large Phonon q. 7.4 Double Resonant Raman Scattering. 7.5 Summary. 8 Vibrational Properties. 8.1 Introduction. 8.2 Radial Breathing Mode. 8.2.1 The RBM in Isolated and Bundled Nanotubes. 8.2.2 Double-walled Nanotubes. 8.3 The Defect-induced D Mode. 8.3.1 The D Mode in Graphite. 8.3.2 The D Mode in Carbon Nanotubes. 8.4 Symmetry of the Raman Modes. 8.5 High-energy Vibrations. 8.5.1 Raman and Infrared Spectroscopy. 8.5.2 Metallic Nanotubes. 8.5.3 Single- and Double-resonance Interpretation. 8.6 Summary. 8.7 What we Can Learn from the Raman Spectra of Single-walled Carbon Nanotubes. Appendix A: Character and Correlation Tables of Graphene. Appendix B: Raman Intensities in Unoriented Systems. Appendix C: Fundamental Constants. Bibliography. Index.
{{comment.content}}