Galois geometry is the theory that deals with substructures living in projective spaces over finite fields, also called Galois fields. This collected work presents current research topics in Galois geometry, and their applications. Presented topics include classical objects, blocking sets and caps in projective spaces, substructures in finite classical polar spaces, the polynomial method in Galois geometry, finite semifields, links between Galois geometry and coding theory, as well as links between Galois geometry and cryptography. (Imprint: Nova)
{{comment.content}}