Least Square Methods The Least Square Algorithm Linear Least Square Methods Nonlinear Least Squares Algorithm Properties of Least Square Algorithms Examples Polynomial Approximation Gram-Schmidt Procedure of Orthogonalization Hypergeometric Function Approach to Generate Orthogonal Polynomials Discrete Variable Orthogonal Polynomials Approximation Properties of Orthogonal Polynomials Artificial Neural Networks for Input-Output Approximation Introduction Direction-Dependent Approach Directed Connectivity Graph Modified Minimal Resource Allocating Algorithm (MMRAN) Numerical Simulation Examples Multi-Resolution Approximation Methods Wavelets Bezier Spline Moving Least Squares Method Adaptive Multi-Resolution Algorithm Numerical Results Global-Local Orthogonal Polynomial MAPping (GLO-MAP) in N Dimensions Basic Ideas Approximation in 1, 2, and N Dimensions Using Weighting Functions Global-Local Orthogonal Approximation in 1-, 2-, and N-Dimensional Spaces Algorithm Implementation Properties of GLO-MAP Approximation Illustrative Engineering Applications Nonlinear System Identification Problem Statement and Background Novel System Identification Algorithm Nonlinear System Identification Algorithm Numerical Simulation Distributed Parameter Systems MLPG-Moving Least Squares Approach Partition of Unity Finite Element Method Control Distribution for Over-Actuated Systems Problem Statement and Background Control Distribution Functions Hierarchical Control Distribution Algorithm Numerical Results Appendix References Index Each chapter contains an Introduction and a Summary.
{{comment.content}}