Introduction Functional Data Motivating Functional Data Why Is Functional Data Analysis Needed? Overview of the Book Implementation of Methodologies Options for Reading This Book Nonparametric Smoothers for a Single Curve Introduction Local Polynomial Kernel Smoothing Regression Splines Smoothing Splines P-Splines Reconstruction of Functional Data Introduction Reconstruction Methods Accuracy of LPK Reconstructions Accuracy of LPK Reconstruction in FLMs Stochastic Processes Introduction Stochastic Processes x2-Type Mixtures F-Type Mixtures One-Sample Problem for Functional Data ANOVA for Functional Data Introduction Two-Sample Problem One-Way ANOVA Two-Way ANOVA Linear Models with Functional Responses Introduction Linear Models with Time-Independent Covariates Linear Models with Time-Dependent Covariates Ill-Conditioned Functional Linear Models Introduction Generalized Inverse Method Reparameterization Method Side-Condition Method Diagnostics of Functional Observations Introduction Residual Functions Functional Outlier Detection Influential Case Detection Robust Estimation of Coefficient Functions Outlier Detection for a Sample of Functions Heteroscedastic ANOVA for Functional Data Introduction Two-Sample Behrens-Fisher Problems Heteroscedastic One-Way ANOVA Heteroscedastic Two-Way ANOVA Test of Equality of Covariance Functions Introduction Two-Sample Case Multi-Sample Case Bibliography Index Technical Proofs, Concluding Remarks, Bibliographical Notes, and Exercises appear at the end of most chapters.
{{comment.content}}