----- 离散变分方法:偏微分方程保结构数值方法
Preface Introduction and Summary of This Book An Introductory Example: the Spinodal Decomposition History Derivation of Dissipative or Conservative Schemes Advanced Topics Target Partial Differential Equations Variational Derivatives First-Order Real-Valued PDEs First-Order Complex-Valued PDEs Systems of First-Order PDEs Second-Order PDEs Discrete Variational Derivative Method Discrete Symbols and Formulas Procedure for First-Order Real-Valued PDEs Procedure for First-Order Complex-Valued PDEs Procedure for Systems of First-Order PDEs Design of Schemes Procedure for Second-Order PDEs Preliminaries on Discrete Functional Analysis Applications Target PDEs Cahn-Hilliard Equation Allen-Cahn Equation Fisher-Kolmogorov Equation Target PDEs Target PDEs Target PDEs Nonlinear Schrodinger Equation Target PDEs Zakharov Equations Target PDEs Other Equations Advanced Topic I: Design of High-Order Schemes Orders of Accuracy of the Schemes Spatially High-Order Schemes Temporally High-Order Schemes: With the Composition Method Temporally High-Order Schemes: With High-Order Discrete Variational Derivatives Advanced Topic II: Design of Linearly-Implicit Schemes Basic Idea for Constructing Linearly-Implicit Schemes Multiple-Points Discrete Variational Derivative Design of Schemes Applications Remark on the Stability of Linearly-Implicit Schemes Advanced Topic III: Further Remarks Solving System of Nonlinear Equations Switch to Galerkin Framework Extension to Non-Rectangular Meshes on D Region A Semi-discrete schemes in space B Proof of Proposition 3.4 Bibliography Index
{{comment.content}}