It is proved that A is a right distributive ring if and only if all quasiinjective right A-modules are Bezout left modules over their endomorphism rings if and only if for any quasiinjective right A-module M which is a Bezout left End (M)-module, every direct summand N of M is a Bezout left End(N)-module. If A is a right or left perfect ring, then all right A-modules are Bezout left modules over their endomorphism rings if and only if all right A-modules are distributive left modules over their endomorphism rings if and only if A is a distributive ring.
{{comment.content}}