Algebraic Identification and Estimation Methods in Feedback Control Systems presents a model-based algebraic approach to online parameter and state estimation in uncertain dynamic feedback control systems. This approach evades the mathematical intricacies of the traditional stochastic approach, proposing a direct model-based scheme with several easy-to-implement computational advantages. The approach can be used with continuous and discrete, linear and nonlinear, mono-variable and multi-variable systems. The estimators based on this approach are not of asymptotic nature, and do not require any statistical knowledge of the corrupting noises to achieve good performance in a noisy environment. These estimators are fast, robust to structured perturbations, and easy to combine with classical or sophisticated control laws. This book uses module theory, differential algebra, and operational calculus in an easy-to-understand manner and also details how to apply these in the context of feedback control systems. A wide variety of examples, including mechanical systems, power converters, electric motors, and chaotic systems, are also included to illustrate the algebraic methodology. Key features: Presents a radically new approach to online parameter and state estimation. Enables the reader to master the use and understand the consequences of the highly theoretical differential algebraic viewpoint in control systems theory. Includes examples in a variety of physical applications with experimental results. Covers the latest developments and applications. Algebraic Identification and Estimation Methods in Feedback Control Systems is a comprehensive reference for researchers and practitioners working in the area of automatic control, and is also a useful source of information for graduate and undergraduate students.
{{comment.content}}