Optimization is generally a reduction operation of a definite quantity. This process naturally takes place in our environment and through our activities. For example, many natural systems evolve, in order to minimize their potential energy. Modeling these phenomena then largely relies on our capacity to artificially reproduce these processes. In parallel, optimization problems have quickly emerged from human activities, notably from economic concerns. This book includes the most recent ideas coming from research and industry in the field of optimization, reliability and the recognition of accompanying uncertainties. It is made up of eight chapters which look at the reviewing of uncertainty tools, system reliability, optimal design of structures and their optimization (of sizing, form, topology and multi-objectives) – along with their robustness and issues on optimal safety factors. Optimization reliability coupling will also be tackled in order to take into account the uncertainties in the modeling and resolution of the problems encountered. The book is aimed at students, lecturers, engineers, PhD students and researchers. Contents 1. Uncertainty. 2. Reliability in Mechanical Systems. 3. Optimal Structural Design. 4. Multi-object Optimization with Uncertainty. 5. Robust Optimization. 6. Reliability Optimization. 7. Optimal Security Factors Approach. 8. Reliability-based Topology Optimization. About the Authors Abdelkhalak El Hami is Professor at the Institut National des Sciences Appliquées, Rouen, France. He is the author of many articles and books on optimization and uncertainty. Bouchaib Radi is Professor in the Faculty of Sciences and Technology at the University of Hassan Premier, Settat, Morocco. His research interests are in such areas as structural optimization, parallel computation, contact problem and metal forming. He is the author of many scientific articles and books.
{{comment.content}}