Presents a systematic view of vibro-impact dynamics based on the nonlinear dynamics analysis Comprehensive understanding of any vibro-impact system is critically impeded by the lack of analytical tools viable for properly characterizing grazing bifurcation. The authors establish vibro-impact dynamics as a subset of the theory of discontinuous systems, thus enabling all vibro-impact systems to be explored and characterized for applications. Vibro-impact Dynamics presents an original theoretical way of analyzing the behavior of vibro-impact dynamics that can be extended to discontinuous dynamics. All topics are logically integrated to allow for vibro-impact dynamics, the central theme, to be presented. It provides a unified treatment on the topic with a sound theoretical base that is applicable to both continuous and discrete systems Vibro-impact Dynamics: Presents mapping dynamics to determine bifurcation and chaos in vibro-impact systems Offers two simple vibro-impact systems with comprehensive physical interpretation of complex motions Uses the theory for discontinuous dynamical systems on time-varying domains, to investigate the Fermi-oscillator Essential reading for graduate students, university professors, researchers and scientists in mechanical engineering.
{{comment.content}}