The famous and important theorem of W. Feit and J. G. Thompson states that every group of odd order is solvable, and the proof of this has roughly two parts. The first part appeared in Bender and Glauberman's Local Analysis for the Odd Order Theorem which was number 188 in this series. This book, first published in 2000, provides the character-theoretic second part and thus completes the proof. Also included here is a revision of a theorem of Suzuki on split BN-pairs of rank one; a prerequisite for the classification of finite simple groups. All researchers in group theory should have a copy of this book in their library.
{{comment.content}}