This book provides an introduction to lattice models of polymers. This is an important topic both in the theory of critical phenomena and the modelling of polymers. The first two chapters introduce the basic theory of random, directed and self-avoiding walks. The next two chapters develop and expand this theory to explore the self-avoiding walk in both two and three dimensions. Following chapters describe polymers near a surface, dense polymers, self-interacting polymers and branched polymers. The book closes with discussions of some geometrical and topological properties of polymers, and of self-avoiding surfaces on a lattice. The volume combines results from rigorous analytical and numerical work to give a coherent picture of the properties of lattice models of polymers. This book will be valuable for graduate students and researchers working in statistical mechanics, theoretical physics and polymer physics. It will also be of interest to those working in applied mathematics and theoretical chemistry.
{{comment.content}}