The remainder of the book may be divided into three parts. The first, consisting of Chapters II — VI, deals with the geometry of a sur face ih the neighborhood of a point and the developments therefrom, such as curves and systems of curves defined by differential equa tions. To a large extent the method is that of Gauss, by which the properties of a surface are derived from the discussion of two quad ratio differential forms. However, little or no space is given to the algebraic treatment of differential forms and their invariants. In addition, the method of moving axes, as defined in the first chapter, has been extended so as to be applicable to an investigation of the properties of surfaces and groups of surfaces. The extent of the theory concerning ordinary points is so great that no attempt has been made to consider the exceptional problems. For a discussion of such questions as the existence of integrals of differential equa tions and boundary conditions the reader must consult the treatises which deal particularly with these subjects.
{{comment.content}}