----- 地下水模型介绍:有限差分法和有限元法
Introduction: Models. Physics of Groundwater Flow. Laplaces Equation. Regional Groundwater Flow System. Finite Differences: Steady State Flow (Laplaces Equation): Differences for Derivatives. Iterative Methods. Gauss Seidel Computer Program. Boundary Conditions. Finite Differences: Steady State Flow (Poissons Equation): Poissons Equation. Island Recharge. Finite Difference Models. Unconfined Aquifer with Dupuit Assumptions. Validity of a Numerical Solution. Finite Differences: Transient Flow: Transient Flow Equation. Explicit Finite Difference Approximation. Implicit Finite Difference Approximation. Unconfined Aquifer with Dupuit Assumptions. Other Solution Methods. Matrix Notation. Tridiagonal Matrices. Alternating Direction Implicit (ADI) Method. Prickett Lonnquist and Trescott Pinder Larson Models. Calibration and Verification. Finite Elements: Steady-State Flow: Galerkins Method. Triangular Elements. Assembly of ConductanceMatrix. Boundary Conditions. Finite Element Computer Program. Region-Near-a-Well Example. Seepage through a Dam. Poissons Equation. Finite Elements: Transient Flow: Galerkins Method. Rectangular Element. Assembly of Matrix Differential Equation. Solving the Matrix Differential Equation. Computer Program for Reservoir Problem. Advective Dispersive Transport: Dispersion. Solute Transport Equation. Finite Element Example: Solute Dispersion in Uniform Flow Field. Concluding Remarks. Appendixes: Anisotropy and Tensors. Variational Method. Isoparametric Quadrilateral Elements. Analogies. Glossary of Symbols. References. Index.
{{comment.content}}