I. Elastic continua. Introduction to Part I. 1. Deformations. 2. Forces and balance principles. 3. Stress-strain equations. 4. Strain energy. 5. Material symmetry. II. Waves and rays. Introduction to Part II. 6. Equations of motion: Isotopic homogeneous continua. 7. Equations of motion: Anisotropic inhomogeneous continua. 8. Hamilton's ray equations. 9. Lagrange's ray equations. 10. Christoffel's equations. 11. Reflection and transmission. III. Variational formulation of rays. Introduction to Part III. 12. Euler's equations. 13. Fermat's principle. 14. Ray parameters. IV. Appendices. Introduction to Part IV. A. Euler's homogenous-function theorem. B. Legendre's transformation. C. List of symbols. Bibliography. Index. About the author.
{{comment.content}}