Multivariate Polysplines —— Applications to Numerical and Wavelet Analysis

----- 多元多样条:在数值和小波分析中的应用

ISBN: 9780124224902 出版年:2001 页码:513 Kounchev, Ognyan Academic Press_RM

知识网络
知识图谱网络
内容简介

Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions. Multivariate polysplines have applications in the design of surfaces and 'smoothing' that are essential in computer aided geometric design (CAGD and CAD/CAM systems), geophysics, magnetism, geodesy, geography, wavelet analysis and signal and image processing. In many cases involving practical data in these areas, polysplines are proving more effective than well-established methods, such as Kriging, radial basis functions, thin plate splines and minimum curvature. Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic. Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines. Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case. Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property.

Amazon评论 {{comment.person}}

{{comment.content}}

作品图片
推荐图书